1. Answer question 1 and any FOUR from questions 2 to 7.
2. Parts of the same question should be answered together and in the same sequence.

Time: 3 Hours

Total Marks: 100

1. a) How strings differ from words of a language? Given an alphabet Σ, what do you mean by a language L over Σ?
b) What is the difference between deterministic and nondeterministic finite state automata?
c) Distinguish between context free and context sensitive language.
d) When is a language said to be recursively enumerable?
e) What is a cross compiler? Give an example.
f) What are the disadvantages of operator precedence parsing?
g) What is meant by peephole optimization? What are its characteristics?

(7x4)

2. a) Show that R is an equivalence relation in the following question:
R is the relation on the set of integers such that $(a, b) \in R$ if and only if $3a + 4b = 7n$ for some integer n.
b) Use mathematical induction to prove that $n^3 + 2n$ is divisible by 3, for $n \geq 1$.
c) Solve the recurrence relation $a_n = 2a_{n-1} + 2^n; a_0 = 2$.

(6+6+6)

3. a) Show that the language $L = \{a^k \mid k = i^2, i \geq 1\}$ is not a finite state language.
b) Construct the transition diagram of the finite automaton M given below and then a minimum state automaton equivalent to M.

$M = (Q, \Sigma, \delta, q_0, F)$ where $Q = \{q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7\}$, $\Sigma = \{0,1\}$, $F = \{q_2\}$ and δ given as follows.

<table>
<thead>
<tr>
<th>δ</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_0</td>
<td>q_1</td>
<td>q_5</td>
</tr>
<tr>
<td>q_1</td>
<td>q_6</td>
<td>q_2</td>
</tr>
<tr>
<td>q_2</td>
<td>q_0</td>
<td>q_2</td>
</tr>
<tr>
<td>q_3</td>
<td>q_2</td>
<td>q_6</td>
</tr>
<tr>
<td>q_4</td>
<td>q_7</td>
<td>q_5</td>
</tr>
<tr>
<td>q_5</td>
<td>q_2</td>
<td>q_6</td>
</tr>
<tr>
<td>q_6</td>
<td>q_6</td>
<td>q_4</td>
</tr>
<tr>
<td>q_7</td>
<td>q_6</td>
<td>q_2</td>
</tr>
</tbody>
</table>

(9+9)

4. a) Construct a context-free grammar that generates the set of strings of the form $a^m b^n c^p; m, n, p \geq 1$ and hence find the PDA that accepts such strings.
b) Obtain a grammar in Chomsky Normal Form (CNF) equivalent to the grammar G with productions P given by $S \rightarrow AACD, A \rightarrow aAb | \epsilon, C \rightarrow aC | a, D \rightarrow aDa | bDb | \epsilon$.

(9+9)
5.
 a) Construct a Turing machine that computes the function \(f(n) = n - 3 \), if \(n \geq 3 \) and \(f(n) = 0 \) for \(n = 1, 2 \) for all positive integers \(n \).
 b) Differentiate between P, NP, NP-complete, and NP-hard problems with appropriate examples.
 c) Define passes of a compiler. Which are the factors that decide number of passes for a compiler?

6.
 a) Consider the grammar:

 \[
 \begin{align*}
 &A \rightarrow a \, A \, a \\
 &B \rightarrow b \, A \, b \\
 &A \rightarrow \varepsilon
 \end{align*}
 \]

 i) Describe the language that the grammar defines.
 ii) Is the grammar ambiguous? Justify your answer.
 iii) Construct a SLR parse table for the grammar.
 iv) Can the conflicts in the table be eliminated?
 b) For the assignment instruction below performs the following:

 \[x = (a + (b * 2)) + 1 \]

 i) Augment the Syntax Directed Translation (SDT) scheme with a rule corresponding to the production \(E \rightarrow \text{const} \) and using a “value” attribute for the constant with its numeric value.
 ii) Generate three-address instructions using the SDT scheme and without any minimization of temporaries.
 iii) Redo the code generation but reusing temporaries.

7.
 a) Explain the followings:

 i) Loop-invariant code motion
 ii) Dead-code elimination
 b) What are the different storage allocation strategies? Explain in detail.